Bendiocarb 0.1% and Malathion 5% Resistance in Anopheles stephensi in Selected Areas of District Peshawar, Pakistan
DOI:
https://doi.org/10.64229/cefdtt25Keywords:
Medicinal Plants Phytochemical, Antimicrobial, Anthraquinones, Anopheles stephensiAbstract
Anopheles stephensi is a major species in Indian sub-continent that causes malaria. For its controlling wide spread of different insecticide is used, which has caused mutation in the specie. The mutation led to insecticide resistant in Anopheles stephensi. This study reveals the current resistance status of Anopheles stephensi against Bendiocarb and Malathion insecticide. For this, about 700 mosquito larvae collected from Hazarkhwani, Jamil Chowk, Surizai and Shalam. Of which 350 died, rest were reared in laboratory. Out of which approximately 250 were identified as Anopheles on adult emergence, 124 were female that were subjected to insecticide exposure for their susceptibility. Results showed that Anopheles stephensi were resistant to Bendiocarb with mortality rate 85.23%, this was followed by Malathion which was also found less effective against Anopheles stephensi with mean mortality rate 83.88%. These insecticides were deemed Confirmed Resistant as their fatality rates were below the WHO-recommended mortality threshold (<90%). This study revealed that Bendiocarb 0.1% and Malathion 5% were found ineffective against Anopheles stephensi, malarial-vector. Several beneficial outcomes of this work might include enhanced monitoring programs, vector control tactics, and public health protection against vector-borne illnesses. The examination of Anopheles stephensi resistance status to various insecticides provides insight into the need to analyze the impact of insecticide resistance in various vector control programs and to monitor it in impacted regions.
References
[1]Shaukat, M. A., Ali, S., Saddiq, B., Hassan, M. W., Ahmad, A., & Kamran, M. (2019). Effective mechanisms to control mosquito borne diseases: a review. Am J Clin Neurol Neurosurg, 4(1),-30.
[2]Hillary, V. E., & Ceasar, S. A. (2021). Genome engineering in insects for the control of vector borne diseases. Progress in Molecular Biology and Translational Science, 179, 197-223.
[3]Ma, H. (2017). Investigation of the natural history of Equine Encephalitis Viruses with radiofrequency telemetry for detection of subclinical disease patterns (Doctoral dissertation, University of Pittsburgh).
[4]Liao, W., Atkinson, C. T., LaPointe, D. A., & Samuel, M. D. (2017). Mitigating future avian malaria threats to Hawaiian forest birds from climate change. PLoS One, 12(1), e0168880.
[5]Foster, W. A., & Walker, E. D. (2019). mosquitoes (Culicidae). In Medical and veterinary entomology (pp. 261-325). Academic press.
[6]Reeves, L. E., Holderman, C. J., Blosser, E. M., Gillett-Kaufman, J. L., Kawahara, A. Y., Kaufman, P. E., & Burkett-Cadena, N. D. (2018). Identification of Uranotaenia sapphirina as a specialist of annelids broadens known mosquito host use patterns. Communications biology, 1(1), 92
[7]Fu WenBo, F. W., & Chen Bin, C. B. (2018). Taxonomy and fauna of Culicidae: history and current knowledge.
[8]Le Goff, G., Boussès, P., Julienne, S., Brengues, C., Rahola, N., Rocamora, G., & Robert, V. (2012). The mosquitoes (Diptera: Culidae) of Seychelles: taxonomy, ecology, vectorial importance, and identification keys. Parasites & Vectors, 5, 1-16.
[9]Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M., Dahl, C., .. & Kaiser, A. (2010). Subfamily Culicinae. Mosquitoes and their control, 187-314.control, 187-314.
[10]Tyagi, B. K., Sarkar, M., Kandasamy, C., & Bhattacharya, S. (2025). Mosquitoes as Vectors, Pests, and Allergenics. In Mosquitoes of India (pp. 173-190). CRC Press.
[11]Braack, L., Gouveia de Almeida, A. P., Cornel, A. J., Swanepoel, R., & De Jager, C. (2018). Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites & vectors, 11, 1-26
[12]Trompette, R. (2000). Gondwana evolution; its assembly at around 600 Ma. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 330(5), 305-315.
[13]Benton, M. J., Dunhill, A. M., Lloyd, G. T., & Marx, F. G. (2011). Assessing the quality of the fossil record: insights from vertebrates.
[14]Cumming, J. M., Wood, D. M., Brown, B. V., & Borkent, A. (2009). Adult morphology and terminology. Manual of central american Diptera, 1, 9-50.
[15]Piper, R. (2021). What Insects Do, and Why. Princeton University Press.
[16]Elgar, M. A., Zhang, D., Wang, Q., Wittwer, B., Pham, H. T., Johnson, T. L., .. & Coquilleau, M. (2018). Focus: ecology and evolution: insect antennal morphology: the evolution of diverse solutions to odorant perception. The Yale journal of biology and medicine, 91(4), 457.
[17]Labandeira, C. C. (2019). The fossil record of insect mouthparts: innovation, functional convergence, and associations with other organisms. Insect mouthparts: form, function, development and performance, 567-671.
[18]Burkett-Cadena, N. D. (2013). Mosquitoes of the southeastern United States. University of Alabama Press.
[19]Hogue, C. L. (1993). Latin American insects and entomology. Univ of California Press.
[20]Reynolds, D. R., & Riley, J. R. (2002). Remote-sensing, telemetric and computer-based technologies for investigating insect movement: a survey of existing and potential techniques. Computers and electronics in agriculture, 35(2-3), 271-307.
[21]Pont, A. C., & Meier, R. (2002). The sepsidae (Diptera) of Europe [electronic resource] (Vol. 37). Brill.s
[22]Gray, Elmer, and Ray Noblet. University of Georgia, Cooperative Extension Service and Department of Entomology. "Controlling Mosquitoes," 31 May 2016
[23]Jones, J. C. (1978). The feeding behavior of mosquitoes. Scientific American, 238(6), 138-150.
[24]Nasci, R. S. (1986). Relationship between adult mosquito (Diptera: Culicidae) body size and parity in field populations. Environmental Entomology, 15(4), 874-876.
[25]Davies, A. J., & Johnston, M. R. L. (2000). The biology of some intraerythrocytic parasites of fishes, amphibia and reptiles.
[26]Melgarejo-Colmenares, K., Cardo, M. V., & Vezzani, D. (2022). Blood feeding habits of mosquitoes: hardly a bite in South America. Parasitology Research, 121(7), 1829-1852.
[27]Rey, J. R., Walton, W. E., Wolfe, R. J., Connelly, R., O’Connell, S. M., Berg, J., .. & Laderman, A. D. (2012). North American wetlands and mosquito control. International journal of environmental research and public health, 9(12), 4537-4605.
[28]Silver, J. B. (2008). Mosquito ecology: field sampling methods. Dordrecht: Springer Netherlands.
[29]Dunnett, N., & Clayden, A. (2007). Rain gardens. Managing Water Sustainably in the Garden and Designed Landscape; Timber Press: Portland, OR, USA.
[30]Kline D. L., Bernier, U. R., & Hogsette, J. A. (2012). Efficacy of three attractant blends tested in combination with carbon dioxide against natural populations of mosquitoes and biting flies at the Lower Suwannee Wildlife Refuge. Journal of the American Mosquito Control Association, 28(2), 123-127.
[31]Omolo, M. O., Ndiege, I. O., & Hassanali, A. (2021). Semiochemical signatures associated with differential attraction of Anopheles gambiae to human feet. PLoS One, 16(12), e0260149.
[32]Braks, M. A. H., Anderson, R. A., & Knols, B. G. J. (1999). Infochemicals in mosquito host selection: human skin microflora and Plasmodium parasites. Parasitology today, 15(10), 409-413.
[33]Dutta, S. K., Nair, M. V., Mohapatra, P. P., & Mahapatra, A. K. (2009). Amphibians and Reptiles.
[34]Wucherer, T. (2021). Mosquitoes of Wisconsin: The Biology, Life History, Identification and Control.
[35]Krenn, H. W. (2019). Fluid-feeding mouthparts. Insect mouthparts: form, function, development and performance, 47-99.
[36]Milleron, R. S. (2002). Adaptive significance of polymorphism in maxadilan, a salivary protein from the sand fly vector of American visceral leishmaniasis (Doctoral dissertation, The University of Texas Medical Branch Graduate School of Biomedical Sciences).
[37]Limo, M. K. (1985). Tick (R. Appendiculatus) Salivary glands bioactive molecules with a biochemical study of the anticoagulant in relation to vector control (Doctoral dissertation).
[38]Ware, F. L., & Luck, M. R. (2017). Evolution of salivary secretions in haematophagous animals. Bioscience Horizons: The International Journal of Student Research, 10, hzw015.
[39]Edman, J. D. (1964). Sources, rate of digestion and utilization of vertebrate blood in mosquitoes (Diptera: Culicidae). Kansas State University.
[40]Nijhout, H. F., & Carrow, G. M. (1978). Diuresis after a bloodmeal in female Anopheles freeborni. Journal of Insect Physiology, 24(4), 293-298.
[41]Naik, B. R., Dinesh, D. S., Siddaiah, M., Daravath, S., & Tyagi, B. K. (2025). Biology of Mosquitoes. In Mosquitoes of India (pp. 219-236). CRC Press.
[42]Li, J. (1994). Egg chorion tanning in Aedes aegypti mosquito. Comparative Biochemistry and Physiology Part A: Physiology, 109(4), 835-843.
[43]Edgerly, J. S., McFarland, M., Morgan, P., & Livdahl, T. (1998). A seasonal shift in egg‐laying behaviour in response to cues of future competition in a treehole mosquito. Journal of Animal Ecology, 67(5), 805-818.
[44]Hallock, A., Buckner, E. A., Telg, R. W., & Poulin, A. R. (2020). Container Mosquito Habitat Community Cleanup: A How-To Guide for Event Organization: ENY-2047/IN1286 12/2020. EDIS, 2020(6), 6-6.
[45]Judson, C. L. (1960). The physiology of hatching of aedine mosquito eggs: hatching stimulus. Annals of the Entomological Society of America, 53(5), 688-691.
[46]Huber, J. T. (1998). The importance of voucher specimens, with practical guidelines for preserving specimens of the major invertebrate phyla for identification. Journal of Natural History, 32(3), 367-385.
[47]Parubrub, A., Reyes, R., Smallridge, C. J., Woods, B., & Haymer, D. (2015). Mitochondrial single nucleotide polymorphisms in Ceratitis capitata (Diptera: Tephritidae) can distinguish sterile, released flies from wild flies in various regions of the world. Journal of economic entomology, 108(1), 301-306.
[48]Das, S., Mukhiya, I. A., Hazra, T., Roy, S., & Das, A. (2024). Mosquito Morphology: Anatomy to Adaptation in the Shadow of Evolution. In Mosquitoes: Biology, Pathogenicity and Management (pp. 37-104). Singapore: Springer Nature Singapore
[49]Keilin, D. (1944). Respiratory systems and respiratory adaptations in larvae and pupae of Diptera. Parasitology, 36(1-2), 1-66.
[50]Baker, J. R., Apperson, C. S., & Arends, J. J. (1986). Insect and other pests of man and animals--some important, common, and potential pests in the Southeastern United States. AG (North Carolina Agricultural Extension Service).
[51]Awasthi, V. B. (2017). Agricultural Insect Pests and Their Control. Scientific Publishers.
[52]Stone, C. M., & Foster, W. A. (2013). Plant-sugar feeding and vectorial capacity. In Ecology of parasite-vector interactions (pp. 35-79). Wageningen Academic.
[53]Gautreau, C. E. (2021). Assessing coastal risk and improving resilience: Cape Jourimain National Wildlife Area (Doctoral dissertation).
[54]Saliternik, Z. (1955). The specific biological characteristics of Anopheles (Myzomyia) sergentii (Theo) and their correlation with malaria control in Israel. Bulletin of Entomological Research, 46(2), 445-462.
[55]Service, M. W. (1997). Mosquito (Diptera: Culicidae) dispersal—the long and short of it. Journal of medical entomology, 34(6), 579-588.
[56]Sarwar, M., & Salman, M. (2015). Insecticides resistance in insect pests or vectors and development of novel strategies to combat its evolution. International Journal of Bioinformatics and Biomedical Engineering, 1(3), 344-351.
[57]Thapa, S., Lv, M., & Xu, H. (2017). Acetylcholinesterase: a primary target for drugs and insecticides. Mini reviews in medicinal chemistry, 17(17), 1665-1676.
[58]Soderlund, D. M. (2020). Neurotoxicology of pyrethroid insecticides. In Advances in Neurotoxicology (Vol. 4, pp. 113-165). Academic Press.
[59]Hadiatullah, H., Zhang, Y., Samurkas, A., Xie, Y., Sundarraj, R., Zuilhof, H., .. & Yuchi, Z. (2022). Recent progress in the structural study of ion channels as insecticide targets. Insect Science, 29(6), 1522-1551.
[60]Suh, P. F., Elanga-Ndille, E., Tchouakui, M., Sandeu, M. M., Tagne, D., Wondji, C., & Ndo, C. (2023). Impact of insecticide resistance on malaria vector competence: a literature review. Malaria Journal, 22(1), 19.
[61]Russell, R. J., Scott, C., Jackson, C. J., Pandey, R., Pandey, G., Taylor, M. C., .. & Oakeshott, J. G. (2011). The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide‐resistant insects. Evolutionary Applications, 4(2), 225-248
[62]Ranganathan, M., Narayanan, M., & Kumarasamy, S. (2022). Importance of metabolic enzymes and their role in insecticide resistance. In New and future development in biopesticide research: Biotechnological exploration (pp. 243-260). Singapore: Springer Nature Singapore
[63]Balabanidou, V., Grigoraki, L., & Vontas, J. (2018). Insect cuticle: a critical determinant of insecticide resistance. Current opinion in insect science, 27, 68-74
[64]Sial, M. U., Zhao, Z., Zhang, L., Zhang, Y., Mao, L., & Jiang, H. (2018). Evaluation of insecticides induced hormesis on the demographic parameters of Myzus persicae and expression changes of metabolic resistance detoxification genes. Scientific Reports, 8(1), 16601.
[65]Montella, I. R., Schama, R., & Valle, D. (2012). The classification of esterases: an important gene family involved in insecticide resistance-A review. Memorias do Instituto Oswaldo Cruz, 107, 437-449.
[66]Dasari, S., Ganjayi, M. S., Oruganti, L., Balaji, H., & Meriga, B. (2017). Glutathione S-transferases detoxify endogenous and exogenous toxic agents-minireview. J Dairy Vet Anim Res, 5(5), 00154.
[67]Esteves, F., Rueff, J., & Kranendonk, M. (2021). The central role of cytochrome P450 in xenobiotic metabolism—a brief review on a fascinating enzyme family. Journal of xenobiotics, 11(3), 94-114.
[68]De Souza, R. F., Amaro, T. R., Palacio-Cortés, A. M., da Silva, M. A. N., Dionisio, J. F., Pezenti, L. F., .. & da Rosa, R. (2024). Comparative transcriptional analysis between susceptible and resistant populations of Aedes (Stegomyia) aegypti (Linnaeus, 1762) after malathion exposure. Molecular Genetics and Genomics, 299(1), 92.
[69]Liu, K., Wang, L., Wen, S., Qiu, X., Cao, P., Liang, P., & Wu, S. (2025). Role of mutation G255A in modulating pyrethroid sensitivity in insect sodium channels. International Journal of Biological Macromolecules, 139455.
[70]Casida, J. E., & Durkin, K. A. (2013). Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annual review of entomology, 58(1), 99-117.
[71]Brengues, C., Hawkes, N. J., Chandre, F., McCarroll, L., Duchon, S., Guillet, P., .. & Hemingway, J. (2003). Pyrethroid and DDT cross‐resistance in Aedes aegypti is correlated with novel mutations in the voltage‐gated sodium channel gene. Medical and veterinary entomology, 17(1), 87-94.
[72]Belinato, T. A., & Martins, A. J. (2016). Insecticide resistance and fitness cost. Insecticides resistance, 243-261.
[73]Dahmana, H., & Mediannikov, O. (2020). Mosquito-borne diseases emergence/resurgence and how to effectively control it biologically. Pathogens, 9(4), 310.
[74]Fotakis, E. A., Chaskopoulou, A., Grigoraki, L., Tsiamantas, A., Kounadi, S., Georgiou, L., & Vontas, J. (2017). Analysis of population structure and insecticide resistance in mosquitoes of the genus Culex, Anopheles and Aedes from different environments of Greece with a history of mosquito borne disease transmission. Acta Tropica, 174, 29-37.
[75]Bellini, R., Zeller, H., & Van Bortel, W. (2014). A review of the vector management methods to prevent and control outbreaks of West Nile virus infection and the challenge for Europe. Parasites & vectors, 7, 1-11.
[76]Cuamba, N., Morgan, J. C., Irving, H., Steven, A., & Wondji, C. S. (2010). High level of pyrethroid resistance in an Anopheles funestus population of the Chokwe District in Mozambique. PloS one, 5(6), e11010.
[77]Nolden, M. (2023). Characterization of cytochrome P450-mediated pyrethroid resistance in Anopheles funestus with special reference to transfluthrin (Doctoral dissertation, Liverpool School of Tropical Medicine).
[78]Oxborough, R. M. (2015). Laboratory and experimental hut evaluation of mosquito net and indoor residual spray (IRS) insecticides for improved malaria control (Doctoral dissertation, London School of Hygiene & Tropical Medicine).
[79]Trape, J. F., Tall, A., Sokhna, C., Ly, A. B., Diagne, N., Ndiath, O., .. & Rogier, C. (2014). The rise and fall of malaria in a west African rural community, Dielmo, Senegal, from 1990 to 2012: a 22-year longitudinal study. The Lancet infectious diseases, 14(6), 476-488
[80]Corbel, V., Akogbeto, M., Damien, G. B., Djenontin, A., Chandre, F., Rogier, C., .. & Henry, M. C. (2012). Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. The Lancet infectious diseases, 12(8), 617-626.
[81]Aslam, R. W., Naz, I., Quddoos, A., & Quddusi, M. R. (2024). Assessing climatic impacts on land use and land cover dynamics in Peshawar, Khyber Pakhtunkhwa, Pakistan: a remote sensing and GIS approach. GeoJournal, 89(5), 202.
[82]Shah, S. A. A., Nisa, S., Khan, A., & Rahman, Z. U. (2012). Trends and variability in climate parameters of Peshawar district. Science Technology and Development, 31.
[83]Okumu, F. O. (2012). Combining insecticide treated bed nets and indoor residual spraying for malaria vector control in Africa (Doctoral dissertation, London School of Hygiene & Tropical Medicine).
[84]Fatima, T., Habib, A., Khan, A., Riaz, R., ul Haq, M. Z., & Raufi, N. (2023). Mosquito-borne diseases in Pakistan: challenges, strategies, and future prospects. IJS Global Health, 6(6), e0385.
[85]Nájera, J. A., González-Silva, M., & Alonso, P. L. (2011). Some lessons for the future from the Global Malaria Eradication Programme (1955–1969). PLoS medicine, 8(1), e1000412.
[86]Andreazza, F., Oliveira, E. E., & Martins, G. F. (2021). Implications of sublethal insecticide exposure and the development of resistance on mosquito physiology, behavior, and pathogen transmission. Insects, 12(10), 917.
[87]Lee, S. E., Kim, J. E., & Lee, H. S. (2001). Insecticide resistance in increasing interest. Journal of Applied Biological Chemistry, 44(3), 105-112.
[88]Vontas, J., Kioulos, E., Pavlidi, N., Morou, E., Della Torre, A., & Ranson, H. (2012). Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pesticide Biochemistry and Physiology, 104(2), 126-131.
[89]Oliver, S. V., & Brooke, B. D. (2016). The role of oxidative stress in the longevity and insecticide resistance phenotype of the major malaria vectors Anopheles arabiensis and Anopheles funestus. PloS one, 11(3), e0151049.
[90]Matthews, G. A. (2018). A history of pesticides. Cabi.
[91]Bass, C., Denholm, I., Williamson, M. S., & Nauen, R. (2015). The global status of insect resistance to neonicotinoid insecticides. Pesticide biochemistry and physiology, 121, 78-87.
[92]Enayati, A., Hanafi-Bojd, A. A., Sedaghat, M. M., Zaim, M., & Hemingway, J. (2020). Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region. Malaria Journal, 19, 1-12.
[93]Yavaşoglu, S. İ., Yaylagül, E. Ö., Akıner, M. M., Ülger, C., Çağlar, S. S., & Şimşek, F. M. (2019). Current insecticide resistance status in Anopheles sacharovi and Anopheles superpictus populations in former malaria endemic areas of Turkey. Acta tropica, 193, 148-157.
[94]Badzohre, A., Oshaghi, M. A., Enayati, A. A., Moosa-Kazemi, S. H., Nikookar, S. H., Talebzadeh, F., .. & Vatandoost, H. (2023). Ace-1 Target Site Status and Metabolic Detoxification Associated with Bendiocarb Resistance in the Field Populations of Main Malaria Vector, Anopheles stephensi in Iran. Journal of Arthropod-Borne Diseases, 17(3), 272.
[95]Susanna, D., & Pratiwi, D. (2022). Current status of insecticide resistance in malaria vectors in the Asian countries: a systematic review. F1000Research, 10, 200.
[96]Ladonni, H. (1988). Genetics and biochemistry of insecticide resistance in Anopheles stephensi (Doctoral dissertation, University of Liverpool).
[97]Hemingway, J., Small, G. J., Monro, A., Sawyer, B. V., & Asap, H. K. (1992). Insecticide resistance gene frequencies in Anopheles sacharovi populations of the Cukurova plain, Adana Province, Turkey. Medical and veterinary entomology, 6(4), 342-348
[98]Hien, A. S., Soma, D. D., Hema, O., Bayili, B., Namountougou, M., Gnankiné, O., .. & Dabiré, K. R. (2017). Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae sl populations from cotton growing areas in Burkina Faso, West Africa. PLoS One, 12(3), e0173098.
[99]Priester, T. M., Georghiou, G. P., Hawley, M. K., & Pasternak, M. E. (1981). Toxicity of pyrethroids to organophosphate-carbamate-and DDT-resistant mosquitoes.
[100]Aïzoun, N., Gnanguenon, V., Azondekon, R., Anagonou, R., Aïkpon, R., & Akogbéto, M. (2014). Status of organophosphate and carbamate resistance in Anopheles gambiae sensu lato from the Sudano Guinean area in the central part of Benin, West Africa. J. Cell. Anim. Biol, 8(4), 61-68.
[101]Rathor, H. R., Toqir, G., & Reisen, W. K. (1980). Status of insecticide resistance in anopheline mosquitoes of Punjab Province, Pakistan. The Southeast Asian Journal of Tropical Medicine and Public Health, 11(3), 332-340.
[102]Mohsin, M., Shafi, J., Naz, S. I., Aslam, S., & Hassan, S. (2021). Variability in susceptibility status of malaria vectors and other Anopheles species against different insecticides in district Faisalabad. Central Punjab, Pakistan.
[103]Casimiro, S. L. R. (2003). Susceptibility and resistance to insecticides among malaria vector mosquitoes in Mozambique (Doctoral dissertation).
[104]Mutunga, J. M., Anderson, T. D., Craft, D. T., Gross, A. D., Swale, D. R., Tong, F., .. & Bloomquist, J. R. (2015). Carbamate and pyrethroid resistance in the akron strain of Anopheles gambiae. Pesticide biochemistry and physiology, 121, 116-121.
[105]NYACHWAYA, L. M. (2019). I56/21120/2012 (Doctoral dissertation, Kenyatta University).
[106]Hakizimana, E., Karema, C., Munyakanage, D., Iranzi, G., Githure, J., Tongren, J. E., .. & Koenraadt, C. J. (2016). Susceptibility of Anopheles gambiae to insecticides used for malaria vector control in Rwanda. Malaria journal, 15, 1-11.
[107]Aïzoun, N., Aïkpon, R., Gnanguenon, V., Oussou, O., Agossa, F., Padonou, G. G., & Akogbéto, M. (2013). Status of organophosphate and carbamate resistance in Anopheles gambiae sensu lato from the south and north Benin, West Africa. Parasites & vectors, 6, 1-6.
[108]Dossou, C., Tchigossou, G., Koto, M., Atoyebi, S. M., Tossou, E., Adanzounon, D., .. & Djouaka, R. (2024). Organophosphate and carbamate susceptibility profiling of Anopheles gambiae sl. across different ecosystems in southern Benin. Wellcome Open Research, 9, 424.
[109]Lagos, S. W. N. (2012). Evidence of carbamate resistance in urban populations of Anopheles gambiae ss mosquitoes resistant to DDT and deltamethrin insecticides in.
[110]Wahedi, J. A., Ande, A. T., Oduola, A. O., & Obembe, A. (2021). Bendiocarb resistance and kdr associated deltamethrin and DDT resistance in Anopheles gambiae sl populations from North Eastern Adamawa State, Nigeria. Ceylon Journal of Science, 50(1).
[111]Iga, J., Ochaya, S., Echodu, R., Opiyo, E. A., Musiime, A. K., Nakamaanya, A., & Malinga, G. M. (2023). Research Article Sibling Species Composition and Susceptibility Status of Anopheles gambiae sl to Insecticides Used for Indoor Residual Spraying in Eastern Uganda.
[112]Oyewole, I. O., Mustapha, M., Kolawole, A. R., Adedeji, O. C., Adeogun, D., & Awolola, S. (2018). Susceptibility pattern of anopheles mosquito to different classes of insecticides in selected communities in Ila-Orangun, southwest Nigeria.
[113]Tchounwou, P. B., Patlolla, A. K., Yedjou, C. G., & Moore, P. D. (2015). Environmental exposure and health effects associated with malathion toxicity. Toxicity and hazard of agrochemicals, 51, 2145-2149.
[114]Winteringham, F. P. W. (1962). Action and inaction of insecticides. Journal of the Royal Society of Arts, 110(5074), 719-740.
[115]Rathor, H. R., Nadeem, G., & Khan, I. A. (2013). Pesticide susceptibility status of Anopheles mosquitoes in four flood-affected districts of South Punjab, Pakistan. Vector-Borne and Zoonotic Diseases, 13(1), 60-66.
[116]Vatandoost, H., Hanafi-Bojd, A. A., Nikpoor, F., Raeisi, A., Abai, M. R., & Zaim, M. (2022). Situation of insecticide resistance in malaria vectors in the World Health Organization of Eastern Mediterranean region 1990–2020. Toxicology Research, 11(1), 1-21.
[117]Abbasi, E., Vahedi, M., Bagheri, M., Gholizadeh, S., Alipour, H., & Moemenbellah-Fard, M. D. (2022). Monitoring of synthetic insecticides resistance and mechanisms among malaria vector mosquitoes in Iran: A systematic review. Heliyon, 8(1).
[118]Chouaibou, M. S., Chabi, J., Bingham, G. V., Knox, T. B., N’Dri, L., Kesse, N. B., .. & Jamet, H. V. P. (2012). Increase in susceptibility to insecticides with aging of wild Anopheles gambiae mosquitoes from Côte d’Ivoire. BMC infectious diseases, 12, 1-7.
[119]Hemingway, J. (1983). Biochemical studies on malathion resistance in Anopheles arabiensis from Sudan. Transactions of the Royal Society of Tropical Medicine and Hygiene, 77(4), 477-480.
[120]Sadia Abbas, S. A., Shabab Nasir, S. N., Muhammad Fakhar-e-Alam, M. F. E. A., & Malik Saadullah, M. S. (2019). Toxicity of different groups of insecticides and determination of resistance in Aedes aegypti from different habitats.
[121]Zahirnia, A. H., Vatandoost, H., Nateghpour, M., & Djavadian, E. (2002). Insecticide resistance/susceptibility monitoring in Anopheles pulcherrimus (Diptera: Culicidae) in Ghasreghand district, Sistan and Baluchistan province, Iran. Iranian Journal of Public Health, 31(1-2), 11-14.
[122]Howell, P. I. (2018). Genetic components of insecticide resistance in Anopheles arabiensis. The University of Liverpool (United Kingdom). Howell, P. I. (2018). Genetic components of insecticide resistance in Anopheles arabiensis. The University of Liverpool (United Kingdom).
[123]Dhiman, S., Yadav, K., Rabha, B., Goswami, D., Hazarika, S., & Tyagi, V. (2016). Evaluation of insecticides susceptibility and malaria vector potential of Anopheles annularis sl and Anopheles vagus in Assam, India. PLoS one, 11(3), e0151786.
[124]Akiner, M. M., Caglar, S. S., & Simsek, F. M. (2013). Yearly changes of insecticide susceptibility and possible insecticide resistance mechanisms of Anopheles maculipennis Meigen (Diptera: Culicidae) in Turkey. Acta tropica, 126(3), 280-285.
[125]Fagbohun, I. K., Idowu, E. T., Otubanjo, O. A., & Awolola, T. S. (2020). Susceptibility status of mosquitoes (Diptera: Culicidae) to malathion in Lagos, Nigeria. Animal Research International, 17(1), 3541-3549.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Shahmeer Mughal (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.