The Blueprint of Animal Evolution: A Dialogue between Form, Function, and Genes

Authors

  • Jenifer Hang Sun Lee Department of Biology, University of Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia Author

DOI:

https://doi.org/10.64229/903bfq30

Keywords:

Evolutionary Morphology, Behavioral Ecology, Evolutionary Genetics, Evo-Devo, Phenotypic Plasticity, Gene Regulation, Epigenetics, Animal Diversity, Natural Selection

Abstract

The evolutionary trajectory of animals is a complex symphony orchestrated by the continuous and reciprocal dialogue between morphology, behavior, and genetics. This review synthesizes current understanding of how these three fundamental levels of biological organization interact to shape animal diversity. We argue that evolution is not a linear process where genes solely dictate form, which then enables behavior. Instead, it is a dynamic feedback loop: behavioral shifts can create new selective pressures on morphology, morphological innovations open up new behavioral niches, and underlying genetic architectures both constrain and facilitate these changes. This article explores the genetic and developmental mechanisms (e.g., HOX genes, Pax6, toolkit genes) that generate morphological diversity, using case studies from limb evolution and pigmentation. It then examines how behavioral plasticity can drive evolutionary divergence, as seen in foraging strategies and communication systems. Crucially, we highlight the role of the genome as the mediating interface, where regulatory evolution and gene duplication provide the raw material for this dialogue. Furthermore, we discuss the emerging role of epigenetics as a mechanistic bridge between environmental experience, behavior, and heritable phenotypic change. By integrating insights from evolutionary developmental biology (evo-devo), behavioral ecology, and genomics, this article presents a holistic framework for understanding animal evolution as an integrated process, where the conversation between form, function, and gene writes the enduring blueprint of life.

References

[1]Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134(1), 25–36. https://doi.org/10.1016/j.cell.2008.06.030

[2]Cohn, M. J., & Tickle, C. (1999). Developmental basis of limblessness and axial patterning in snakes. Nature, 399(6735), 474–479. https://doi.org/10.1038/20944

[3]Shapiro, M. D., Marks, M. E., Peichel, C. L., Blackman, B. K., Nereng, K. S., Jónsson, B., Schluter, D., & Kingsley, D. M. (2004). Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428(6984), 717–723. https://doi.org/10.1038/nature02415

[4]Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E., & Safran, R. J. (2010). Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics, 26(5), 231–239. https://doi.org/10.1016/j.tig.2010.02.002

[5]Crispo, E. (2007). The Baldwin effect and genetic assimilation: Revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution, 61(11), 2469–2479. https://doi.org/10.1111/j.1558-5646.2007.00203.x

[6]Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D. J., Miyagi, R., ... & Okada, N. (2008). Speciation through sensory drive in cichlid fish. Nature, 455(7213), 620–626. https://doi.org/10.1038/nature07285

[7]Nathans, J. (1999). The evolution and physiology of human color vision: Insights from molecular genetic studies of visual pigments. Neuron, 24(2), 299–312. https://doi.org/10.1016/S0896-6273(00)80845-4

[8]Fry, B. G., Vidal, N., Norman, J. A., Vonk, F. J., Scheib, H., Ramjan, S. F. R., ... & Richardson, M. K. (2006). Early evolution of the venom system in lizards and snakes. Nature, 439(7076), 584–588. https://doi.org/10.1038/nature04328

[9]Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854. https://doi.org/10.1038/nn1276

[10]Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 157(1), 95–109. https://doi.org/10.1016/j.cell.2014.02.045

[11]Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R., & Tabin, C. J. (2004). Bmp4 and morphological variation of beaks in Darwin's finches. Science, 305(5689), 1462–1465. https://doi.org/10.1126/science.1098095

[12]Santos, J. C., & Cannatella, D. C. (2011). Phenotypic integration emerges from aposematism and scale in poison frogs. Proceedings of the National Academy of Sciences, 108(15), 6175–6180. https://doi.org/10.1073/pnas.1010952108

[13]Joron, M., Papa, R., Beltrán, M., Chamberlain, N., Mavárez, J., Baxter, S., ... & McMillan, W. O. (2006). A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biology, 4(10), e303. https://doi.org/10.1371/journal.pbio.0040303

[14]Prum, R. O., & Brush, A. H. (2002). The evolutionary origin and diversification of feathers. The Quarterly Review of Biology, 77(3), 261–295. https://doi.org/10.1086/341993

[15]Moczek, A. P., Sears, K. E., Stollewerk, A., Wittkopp, P. J., Diggle, P., Dworkin, I., ... & Abouheif, E. (2015). The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evolution & Development, 17(3), 198–219. https://doi.org/10.1111/ede.12125

[16]Kronforst, M. R., Barsh, G. S., Kopp, A., Mallet, J., Monteiro, A., Mullen, S. P., ... & Hoekstra, H. E. (2012). Unraveling the thread of nature’s tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell & Melanoma Research, 25(4), 411–433. https://doi.org/10.1111/j.1755-148X.2012.01014.x

Downloads

Published

2025-12-23

Issue

Section

Articles

How to Cite

Lee, J. H. S. (2025). The Blueprint of Animal Evolution: A Dialogue between Form, Function, and Genes. Zoological Synthesis, 1(2), 1-7. https://doi.org/10.64229/903bfq30